A fluctuating fractal nanoworld
نویسنده
چکیده
The localization of elementary excitations in complex media is one of the most universal and important problems of physics, spanning the range from electrons in disordered materials to acoustic waves in nonuniform media, to light waves in the presence of random scatterers. One of the most fundamental effects in this wide class of phenomena is Anderson localization [1]. This effect is predicted for both classical waves and quantummechanical states in random scattering media and is deeply rooted in general properties of time reversal, which dictate that back-scattered waves add coherently to the original wave packet, leading to its localization. For electrons, the properties of this localization are influenced by, and can be obscured by, electron-electron interactions. In contrast, in linear optics, the propagation and scattering phenomena involve noninteracting photons (or electromagnetic waves in the classical picture). In this case, the scattering can lead to Anderson localization in its purest forms. One of the practical implications of the light localization in strongly scattering media is, for instance, random lasers [2]. Now, as reported in Physical Review Letters, Valentina Krachmalnicoff, Etienne Castanié, Yannick De Wilde, and Rémi Carminati of the Institut Langevin in Paris [3] have, for the first time, experimentally observed the near-field localization and fluctuations of optical energy on a multitude of length scales in disordered nanoplasmonic metal systems.
منابع مشابه
Fluctuating Asymmetry: Methods, Theory, and Applications
Fluctuating asymmetry consists of random deviations from perfect symmetry in populations of organisms. It is a measure of developmental noise, which reflects a population’s average state of adaptation and coadaptation. Moreover, it increases under both environmental and genetic stress, though responses are often inconsistent. Researchers base studies of fluctuating asymmetry upon deviations fro...
متن کاملImplementation of perception and action at nanoscale
Real time combination of nanosensors and nanoactuators with virtual reality environment and multisensorial interfaces enable us to efficiently act and perceive at nanoscale. Advanced manipulation of nanoobjects and new strategies for scientific education are the key motivations. We have no existing intuitive representation of the nanoworld ruled by laws foreign to our experience. A central chal...
متن کاملFractional and fractal derivatives modeling of turbulence
This study makes the first attempt to use the 2/3-order fractional Laplacian modeling of enhanced diffusing movements of random turbulent particle resulting from nonlinear inertial interactions. A combined effect of the inertial interactions and the molecule Brownian diffusivities is found to be the bi-fractal mechanism behind multifractal scaling in the inertial range of scales of moderate Rey...
متن کاملExotic topological order in fractal spin liquids
We present a large class of three-dimensional spin models that possess topological order with stability against local perturbations, but are beyond description of topological quantum field theory. Conventional topological spin liquids, on a formal level, may be viewed as condensation of stringlike extended objects with discrete gauge symmetries, being at fixed points with continuous scale symme...
متن کاملGas-Liquid Two Phase Flow Pattern Evolution Characteristics Based on Detrended Fluctuation Analysis
In this paper, we first extract a nonlinear time series from the Weierestrass function as a toy model and investigate the anti-noise ability of six different fractal scale algorithm. The results indicate that the fractal scales calculated from Detrended Fluctuation Analysis(DFA) are robust with respect to variation in noise level. Based on the conductance fluctuating signals measured from verti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010